Using nanoparticles to deliver cancer drugs offers a way to hit tumors with large doses of drugs while avoiding the harmful side effects that often come with chemotherapy. However, so far, only a handful of nanoparticle-based cancer drugs have been FDA-approved.
A new study from MIT and Broad Institute of MIT and Harvard researchers may help to overcome some of the obstacles to the development of nanoparticle-based drugs. The team’s analysis of the interactions between 35 different types of nanoparticles and nearly 500 types of cancer cells revealed thousands of biological traits that influence whether those cells take up different types of nanoparticles.
The findings could help researchers better tailor their drug-delivery particles to specific types of cancer, or design new particles that take advantage of the biological features of particular types of cancer cells.
“We are excited by our findings because it is really just the beginning — we can use this approach to map out what types of nanoparticles are best to target certain cell types, from cancer to immune cells and other kinds of healthy and diseased organ cells. We are learning how surface chemistry and other material properties play a role in targeting,” says Paula Hammond, an MIT Institute Professor, head of the Department of Chemical Engineering, and a member of MIT’s Koch Institute for Integrative Cancer Research.
Hammond is the senior author of the new study, which appears in Science. The paper’s lead authors are Natalie Boehnke, an MIT postdoc who will soon join the faculty at the University of Minnesota, and Joelle Straehla, the Charles W. and Jennifer C. Johnson Clinical Investigator at the Koch Institute, an instructor at Harvard Medical School, and a pediatric oncologist at Dana-Farber Cancer Institute.
Cell-particle interactions
Hammond’s lab has previously developed many types of nanoparticles that can be used to deliver drugs to cells. Studies in her lab and others have shown that different types of cancer cells often respond differently to the same nanoparticles. Boehnke, who was studying ovarian cancer when she joined Hammond’s lab, and Straehla, who was studying brain cancer, also noticed this phenomenon in their studies.
Source: Read Full Article