Researchers have demonstrated how airborne diseases such as COVID-19 spread along the length of a train carriage and found that there is no ‘safest spot’ for passengers to minimise the risk of transmission.
The researchers, from the University of Cambridge and Imperial College London, developed a mathematical model to help predict the risk of disease transmission in a train carriage, and found that in the absence of effective ventilation systems, the risk is the same along the entire length of the carriage.
The model, which was validated with a controlled experiment in a real train carriage, also shows that masks are more effective than social distancing at reducing transmission, especially in trains that are not ventilated with fresh air.
The results, reported in the journal Indoor Air, demonstrate how challenging it is to for individuals to calculate absolute risk, and how important it is for train operators to improve their ventilation systems in order to help keep passengers safe.
Since COVID-19 is airborne, ventilation is vital in reducing transmission. And although COVID-19 restrictions have been lifted in the UK, the government continues to highlight the importance of good ventilation in reducing the risk of transmission of COVID-19, as well as other respiratory infections such as influenza.
“In order to improve ventilation systems, it’s important to understand how airborne diseases spread in certain scenarios, but most models are very basic and can’t make good predictions,” said first author Rick de Kreij, who completed the research while based at Cambridge’s Department of Applied Mathematics and Theoretical Physics. “Most simple models assume the air is fully mixed, but that’s not how it works in real life.
Source: Read Full Article